CQUESTTMGB

MODULAR CARPET TILE

CQuest™GB

A new-and-improved version of our GlasBac™ backing. It features the same superior performance with a construction of post-consumer carpet tiles, bio-based additives, and pre-consumer recycled materials, which are net carbon negative.

Interface®

For more than four decades, Interface has consistently led the industry through design and innovation and is a world leader in environmental sustainability. We are committed to transparency and will continue to share our progress as we work to become a carbon negative company by 2040.

At Interface, we believe Life Cycle Assessment is critical for evaluating the environmental impacts of our products. The LCA-based Environmental Product Declaration is the best way to provide full disclosure of those impacts to our customers

Interface was one of the first companies to develop EPDs for all of our products manufactured globally, and we are committed to providing this level of transparency to our customers, partners and the industry.

For more information visit www.interface.com.

Interface®

CQUEST™ GB

According to ISO 14025, EN 15804, and ISO21930:2017

EPD PROGRAM AND PROGRAM OPERATOR NAME, ADDRESS, LOGO, AND WEBSITE	UL Environment 333 Pfingsten Road Northbrook, IL 60611	https://www.ul.com/ https://spot.ul.com
GENERAL PROGRAM INSTRUCTIONS AND VERSION NUMBER	General Program Instructions v.2.5 March 20	020
MANUFACTURER NAME AND ADDRESS	Interface, Inc.; Troup County, Georgia, USA	
DECLARATION NUMBER	4788873607.103.1	
DECLARED PRODUCT & FUNCTIONAL UNIT OR DECLARED UNIT	CQUEST GB Modular Flooring Tile; Function	nal Unit of 1 square meter of floor covering
REFERENCE PCR AND VERSION NUMBER	Part A: Life Cycle Assessment Calculation R Environment, V3.2, 2018) and Part B: Floorir 2018)	ules and Report Requirements, (UL ng EPD Requirements (UL Environment V2.0,
DESCRIPTION OF PRODUCT APPLICATION/USE		ed version of our GlasBac™ backing. It features ruction of post-consumer carpet tiles, bio-based als.
DATE OF ISSUE	July 1, 2020	
PERIOD OF VALIDITY	5 Years	
EPD TYPE	Product-Specific	
EPD SCOPE	Cradle-to-grave	
LCA SOFTWARE & VERSION NUMBER	Gabi v. 9.2.169	
LCI DATABASE(S) & VERSION NUMBER	Gabi v. 9.2.169	
LCIA METHODOLOGY & VERSION NUMBER	TRACI 2.1	

	UL Environment
	PCR Review Panel
This PCR review was conducted by:	epd@ulenvironment.com
This declaration was independently verified in accordance with ISO 14025: 2006. ☐ INTERNAL ☒ EXTERNAL	Grant R. Martin
	Grant R. Martin, UL Environment
This life cycle assessment was independently verified in accordance with ISO 14044 and the reference PCR by:	Thomas Strice
	Thomas P. Gloria, Industrial Ecology Consultants

LIMITATIONS

Exclusions: EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and certifications that are designed to address these impacts and/or set performance thresholds - e.g. Type 1 certifications, health assessments and declarations, environmental impact assessments, etc.

Accuracy of Results: EPDs regularly rely on estimations of impacts; the level of accuracy in estimation of effect differs for any particular product line and reported impact.

Comparability: EPDs from different programs may not be comparable. Full conformance with a PCR allows EPD comparability only when all stages of a life cycle have been considered. However, variations and deviations are possible". Example of variations: Different LCA software and background LCI datasets may lead to differences results for upstream or downstream of the life cycle stages declared.

Interface®

CQUEST™ GB

According to ISO 14025, EN 15804 and ISO 21930:2017

1. Product Definition and Information

1.1. Description of Company/Organization

Interface, Inc. is a global flooring company specializing in carbon neutral carpet tile and resilient flooring, including luxury vinyl tile (LVT) and nora® rubber flooring. We help our customers create high-performance interior spaces that support well-being, productivity, and creativity, as well as the sustainability of the planet. Our mission, Climate Take Back™, invites you to join us as we commit to operating in a way that is restorative to the planet and creates a climate fit for life.

1.2. Product Description

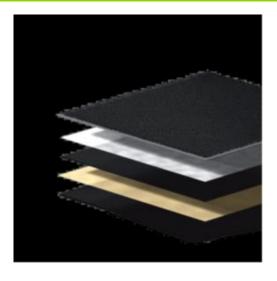


Figure 1 (left): CQuest™ carbon negative backings, layered with: Yarn tufted into the primary backing; a pre-coat; backing compound; stabilizing glass tissue and a final backing compound.

Product Identification

Interface CQuest [™] GB is new-and-improved version of our GlasBac[™] backing. It features the same superior performance with a construction of post-consumer carpet tiles, bio-based additives, and pre-consumer recycled materials, which are net carbon negative. This Environmental Product Declaration covers all styles and patterns of modular carpet on CQuest [™] GB backing with recycled Nylon yarn. The products are manufactured in Troup County, Georgia, USA. The products range in yarn weight from 407 to 1424 grams per square meter. A medium yarn weight of 678 grams per square meter is reported and the Global Warming Potential of all additional product yarn weights are reported.

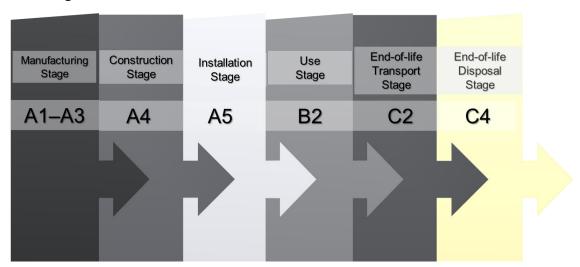
Product Specification

UNSPSC code: 301617

CSI code: 09680

Environment

3


Interface®

CQUEST™ GB

According to ISO 14025, EN 15804 and ISO 21930:2017

Flow Diagram

Product Average

The product average with 678 grams of yarn per square meter was based on a sales weighted average.

1.3. Application

Modular installation of floorcovering in commercial buildings

1.4. Declaration of Methodological Framework

The data is retrieved from a cradle to grave LCA study. The description of study boundaries is declared in Table 11.

Interface®

CQUEST™ GB

According to ISO 14025, EN 15804 and ISO 21930:2017

1.5. Technical Requirements

Name	Value	Unit
Yarn type	Nylon	
Primary backing type	Polyester	
Secondary backing type	CQuest GB (recycled vinyl)	
		2.5 Moderate, 3.0 Heavy, 3.5
CRI rating	3.5	Severe
Total thickness	Variable	mm
Product weight*	3200	g/m²
Surface pile thickness*	2.7	mm
Surface pile weight	678	g/m²

^{*} nominal values

1.6. Market Placement / Application Rules

Product considered relevant technical specifications such as ASTM E-648 and ASTM E-662. See Section 6.3 for more info.

1.7. Material Composition

Component	Material	% Mass
Yarn	Nylon	1%
Tam	Post-consumer recycled nylon	12%
	Pre-consumer recycled nylon	9%
	Pre & Post-consumer recycled	
Primary backing	polyester	3%
Precoat backing	Vinyl acetate emulsion	4%
1 recoat backing	Alumina trihydrate	3%
Stabilization layer	Fiberglass mat	2%
	Bio-based filler	1%
	Pre-consumer recycled limestone	38%
Secondary backing	Pre & post-consumer recycled carpet tile	13%
	Pre-consumer recycled vinyl resin	7%
	Bio-based oil	6%

Interface®

CQUEST™ GB

According to ISO 14025, EN 15804 and ISO 21930:2017

1.8. Manufacturing

CQuest GB is manufactured in Troup County, Georgia.

1.9. Packaging

Planks and tiles are packaged in cardboard boxes. Packaging waste should be reused or sent local cardboard recycling facilities.

1.10. Transportation

Delivery is represented as transport by truck over a distance of 500 miles (805 km).

1.11. Product Installation

Product may be installed with pressure sensitive adhesive or TacTiles® which can prevent damage to the subfloor, increasing ease of removal and recycling, and installation during occupancy. For full installation instructions, see the Interface Installation Guide.

1.12. Use

During the reference service life of the carpet, it should be cleaned in accordance with the product warranty instructions including vacuuming and extraction cleaning. The frequency is dependent upon the expected foot traffic and local conditions.

1.13. Reference Service Life and Estimated Building Service Life

Reference service life is indicated in Table 3.

1.14. Reuse, Recycling, and Energy Recovery

The modular aspect of the product allows for easy reuse of the product. The product is intended to be recycled through

Interface®

CQUEST™ GB

According to ISO 14025, EN 15804 and ISO 21930:2017

Interface's ReEntry process.

1.15. Disposal

At end of life the product should be returned to Interface through Interface's ReEntry process by contacting Interface at 888-733-6873. Disposal in municipal landfill or commercial incineration facilities is permissible in accordance with local regulations.

2. Life Cycle Assessment Background Information

2.1. Functional or Declared Unit

The functional unit is one square meter of floorcovering.

Modular carpet on CQuest™GB	Value	Unit
Functional unit	1	m^2
Mass*	3.2	kg

^{*}nominal value

2.2. System Boundary

The LCA is "cradle-to-gate with options" for one square meter of flooring. While the warranted service life is 15 years, modules B1, B3, B4, and B5 are not declared, so the maintenance (B4) is represented for one year. The system boundaries include:

- A1 Raw material extraction and processing, and processing of recycled materials
- A2 Transport to the factory
- A3 Manufacturing including materials, packaging, energy, and waste disposal or recycling
- A4 Transport to installation sites (Asia, US, and Europe)
- A5 Installation including ancillary materials required for installation and trim-waste disposal
- Maintenance: Includes the energy for vacuuming, extraction cleaning and the production and transport of cleaning agents. The treatment of the waste-water from extraction cleaning is included. This is for one year of use.
- C2 Transport of waste to local disposal
- C4 Disposal

2.3. Estimates and Assumptions

The datasets for materials upstream from manufacturing are a combination of information from the GaBi database and supplier provided datasets. Inventories for all materials are not available and when unavailable, conservative proxy datasets were chosen based on similarity of material.

2.4. Cut-off Criteria

Interface®

CQUEST™ GB

According to ISO 14025, EN 15804 and ISO 21930:2017

As dictated by the Part A: Calculation rules for the life cycle assessment and requirements, the cut-off criteria is less than 1% for energy use and less than 1% of total mass per unit process, the sum of which shall not exceed 5% of either energy or mass. If a flow met the cut-off criteria for exclusion, yet was thought to have significant environmental impact, then it was included.

2.5. Data Sources and Quality

The datasets for materials upstream from manufacturing are a combination of information from the GaBi database version 9.2.68 in 2020 and supplier provided datasets. The data quality ranges from good to very good. The temporal quality of the data is very good with both the manufacturing specific data and the GaBi background data being from 2020.

2.6. Market Placement / Application Rules

Includes relevant technical specifications such as ASTM E-648 and ASTM E-662. See Section 6.3 for more info.

2.7. Period under Review

The data collection and the product described are an average product manufactured in 2020.

2.8. Allocation

Where relevant, the background data incorporates some allocation such as in the power mix. There are no co-products produced in the process, so the LCA model does not include allocation. No credits were taken for recycling of production waste.

3. Life Cycle Assessment Scenarios

Table 1. Transport to the building site (A4)

Name	Value Unit		
Fuel type	Diesel		
Liters of fuel	0.00134	kg/100km	
Vehicle type	Truck 34- 40	tonnes	
Transport distance	805	km	
Capacity utilization (including empty runs, mass based)	85	%	
Weight of products transported*	3.2	kg	
Volume of products transported*	0.001	m ³	
Capacity utilization volume factor	,	1	
*nominal values			

Interface®

CQUEST™ GB

According to ISO 14025, EN 15804 and ISO 21930:2017

Table 2. Installation into the building (A5)

Name	Value	Unit
Ancillary materials	0.004	kg
Net freshwater consumption specified by water source and fate (amount evaporated, amount disposed to sewer)	-	m^3
Other resources	-	kg
Electricity consumption	-	kWh
Other energy carriers	-	MJ
Product loss per functional unit	0.06	kg
Waste materials at the construction site before waste processing, generated by product installation	0.10	kg
Output materials resulting from on-site waste processing (specified by route; e.g. for recycling, energy recovery and/or disposal)	-	kg
Mass of packaging waste specified by type	-	kg
Biogenic carbon contained in packaging	0.1	kg CO ₂
Direct emissions to ambient air, soil and water	-	kg
VOC content	-	μg/m³

Interface®

CQUEST™ GB

According to ISO 14025, EN 15804 and ISO 21930:2017

Table 3. Reference Service Life

NAME	VALUE	Unit
RSL	15	years

Table 4. Maintenance (B2)

Name	VALUE	Unit
Maintenance process information (cite source in report)	15	1/ RSL
Maintenance cycle	1	1/ ESL
Maintenance cycle	365	1/year
Net freshwater consumption specified by water source and fate (amount evaporated, amount disposed to sewer)	5460	1/RSL
Ancillary materials specified by type (e.g. cleaning agent)	2	1/year
Other resources	30	1/RSL
Energy input, specified by activity, type and amount	1.93	kg/year
Other energy carriers specified by type	0.007	kg/year
Power output of equipment	0.004	kg
Waste materials from maintenance	1.6	MJ/year
Direct emissions to ambient air, soil and water	-	kWh

Table 5. End of life (C2, C4)

NAME		VALUE	Unit
Assumptions for scenario development (de collection, recovery, disposal method and t	Assume landfill waste scenario with truck transport.		
Transport to disposal		32	km
	Collected separately	-	kg
Collection process (specified by type)	Collected with mixed construction waste	-	kg
	Reuse	0	kg
	Recycling	0	kg
	Landfill	3.13	kg
Recovery (specified by type)	Incineration	0	kg
(specified by type)	Incineration with energy recovery	0	kg
	Energy conversion efficiency rate	-	%
Disposal (specified by type)	Product or material for final deposition	-	kg
Removals of biogenic carbon (excluding pa	ackaging)	-	kg CO ₂

Interface®

CQUEST™ GB

According to ISO 14025, EN 15804 and ISO 21930:2017

4. Life Cycle Assessment Results

Table 6. Description of the system boundary modules

	PRODUCT STAGE				RUCT- ROCESS IGE		USE STAGE					EI	ND OF L	IFE STAGI	1	BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARY	
	A1	A2	А3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	СЗ	C4	D
	Raw material supply	Transport	Manufacturing	Transport from gate to site	Assembly/Install	Use	Maintenance	Repair	Replacement	Refurbishment	Building Operational Energy Use During Product Use	Building Operational Water Use During Product Use	Deconstruction	Transport	Waste processing	Disposal	Reuse, Recovery, Recycling Potential
EPD Type		Х		Х	Х	MND	MND	MND	MND	MND	Х	MND	х	MND	Х	Х	Х

4.1. Life Cycle Impact Assessment Results

Table 7. North American Impact Assessment Results

TRACI v2.1	A1-A3	A4	A5	B2	C2	C4
GWP [kg CO2 eq]	2.18E+00	1.23E-01	6.69E-02	4.04E-01	4.73E-03	2.06E-01
ODP [kg CFC-11 eq]	1.27E-07	3.08E-17	3.40E-09	1.22E-09	1.18E-18	6.83E-16
AP [kg SO ₂ eq]	1.83E-02	6.75E-04	4.56E-04	7.85E-04	2.59E-05	5.92E-04
EP [kg N eq]	3.48E-03	5.03E-05	8.17E-05	2.66E-04	1.93E-06	2.72E-04
SFP [kg O ₃ eq]	3.24E-01	1.50E-02	7.51E-03	1.31E-02	5.77E-04	9.73E-03
ADP _{fossil} [MJ, LHV]	5.04E+00	2.40E-01	1.51E-01	3.41E-01	9.22E-03	4.14E-01
	CWD 100 = ala	hal warming actor	tials ODD = ozona o	dealation actortials	AD = acidification	potential: ED =

GWP 100 = global warming potential; ODP = ozone depletion potential; AP = acidification potential; EP = Caption eutrophication potential; SFP = smog formation potential; ADP fossil= abiotic resource depletion potential of non-renewable (fossil) enery resources

Interface®

According to ISO 14025, EN 15804 and ISO 21930:2017

Table 8. EU Impact Assessment Results

CML v4.2	A1-A3	A4	A5	В2	C2	C4
GWP 100 [kg CO2 eq]	2.18E+00	1.23E-01	6.72E-02	4.06E-01	4.74E-03	2.09E-01
ODP [kg CFC-11 eq]	1.00E-07	3.08E-17	2.66E-09	1.12E-09	1.18E-18	6.83E-16
AP [kg SO ₂ eq]	1.60E-02	5.00E-04	4.10E-04	7.16E-04	1.92E-05	5.71E-04
EP [kg PO ₄ ⁻]	3.48E-03	1.25E-04	9.64E-05	1.79E-04	4.81E-06	5.97E-04
POCP [kg ethene eq]	1.52E-03	-2.05E-04	4.04E-05	5.52E-05	-7.87E-06	6.45E-05
ADP _{element} [kg Sb-eq]	4.85E-06	1.16E-08	9.94E-08	2.11E-07	4.44E-10	4.08E-08
ADP _{fossil} [MJ, LHV]	3.98E+01	1.68E+00	1.19E+00	3.83E+00	6.44E-02	3.14E+00

	GWP 100 = global warming potential; ODP = depletion potential of the stratospheric ozone layer; AP =
C d	acidification potential of soil and water; EP = eutrophication potential; POCP = photochemical oxidant
Caption	creation potential; ADP - elements = Abiotic depletion potential for non-fossil resources; ADP- fossil fuels =
	abiotic depletion potential for fossil resources

Interface®

According to ISO 14025, EN 15804 and ISO 21930:2017

4.2. Life Cycle Inventory Results

Table 9. Resource Use

Parameter	A1-A3	A4	A5	B2	C2	C4
RPR _E [MJ, LHV]	1.74E+01	9.71E-02	-	6.45E-01	3.73E-03	2.28E-01
RPR_{M} [MJ, LHV]	3.61E+01	_	1.08E+00	1.30E-02	_	_
NRPR _E [MJ, LHV]	9.10E-01	1.69E+00	-	4.08E+00	6.47E-02	3.24E+00
$NRPR_{M}$ $[MJ, LHV]$	4.35E+01	_	1.31E+00	7.50E-01	_	_
SM [kg]	6.98E-01	0.00E+00	1.40E-02	_	_	_
RSF [MJ, LHV]	6.37E-05	-	1.27E-06	-	-	_
NRSF [MJ, LHV]	9.70E-04	-	1.94E-05	-	-	_
RE [MJ, LHV]	-	-	-	-	-	_
FW [m ³]	1.11E-01	1.13E-04	2.48E-03	2.13E-03	4.34E-06	3.98E-05

Caption

RPRE = Renewable primary resources used as energy carrier (fuel); RPRM=Renewable primary resources with energy content used as material; NRPRE= Non-renewable primary resources used as an energy carrier (fuel); NRPRM= Non-renewable primary resources with energy content used as material; SM= Secondary materials; RSF=Renewable secondary fuels; NRSF: Non-renewable secondary fuels; RE= Recovered energy; FW=Use of net fresh water resources

Interface®

CQUEST™ GB

According to ISO 14025, EN 15804 and ISO 21930:2017

Table 10. Output Flows and Waste Categories

Parameter	A1-A3	A4	A5	В2	C2	C4
HWD [kg]	1.64E-03	7.80E-08	3.29E-05	1.56E-05	2.99E-09	1.18E-08
NHWD [kg]	2.47E-01	2.67E-04	1.19E-01	1.93E-03	1.03E-05	3.11E+00
HLRW [kg]	1.25E-06	2.89E-09	2.79E-08	4.54E-07	1.11E-10	4.04E-08
ILLRW [kg]	9.31E-04	3.10E-06	2.09E-05	3.75E-04	1.19E-07	3.91E-05
CRU [kg]	_	_	_	_	_	_
MER [kg]	_	_	_	_	_	_
EE [MJ, LHV]	-	-	-	-	-	_

Caption

HWD = hazardous waste disposed; NHWD= non-hazardous waste disposed; HLRW = high-level radioactive waste, conditioned, to final repository; ILLRW = intermediate and low-level radioactive waste, conditioned to final repository; CRU= components for reuse; MR=materials for recycling; MER=materials for energy recovery; EE= Recovered energy exported from the product system

Table 11. Carbon Emissions and Removals

Parameter	A1-A3	A4	A5	B2	C2	C4
BCRP [kg CO2]	2.64E+00	7.09E-03	5.69E-02	1.13E-02	2.72E-04	1.31E-02
BCEP [kg CO2]	2.11E+00	6.88E-03	4.25E-02	1.14E-02	2.64E-04	6.24E-03
BCRK [kg CO2]	1.80E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEK [kg CO2]	6.83E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEW [kg CO2]	-	-	-	-	-	-
CCE [kg CO2]	-	-	-	_	-	-
CCR [kg CO2]	-	-	-	-	-	-
CWNR [kg CO2]	_	-	-	_	-	-

Interface®

CQUEST™ GB

Caption

According to ISO 14025, EN 15804 and ISO 21930:2017

BCRP [kg CO2] = Biogenic Carbon Removal from Product; BCEP [kg CO2] Biogenic Carbon Emission
from Product; BCRK [kg CO2] = Biogenic Carbon Removal from Packaging; BCEK [kg CO2] = Biogenic
Carbon Emission from Packaging; BCEW [kg CO2] = Biogenic Carbon Emissions from Combustion of
Waste; CCE [kg CO2] = Calcination Carbon Emissions; CCR [kg CO2] = Carbonation Carbon Removal;
CWNR [kg CO2] = Carbon Emissions from Combustion of Waste from Non-Renewable Sources used in
Production Processes

Results of the LCA - Product stage A1-A3 Global Warming Potential (GWP) for additional product yarn weights (ounces per square yard / grams per square meter)

Yarn Weight	A1-A3 Manufacturing Stage
12 oz. / 407 gr.	1.58
13 oz. / 441 gr.	1.66
14 oz. / 475 gr.	1.74
15 oz. / 509 gr.	1.82
16 oz. / 542 gr.	1.89
17 oz. / 575 gr.	1.97
18 oz. / 610 gr.	2.05
19 oz. / 644 gr.	2.13
20 oz. / 678 gr.	2.21
21 oz. / 712 gr.	2.29
22 oz. / 746 gr.	2.36
23 oz. / 780 gr.	2.44
24 oz. / 814 gr.	2.52
25 oz. / 848 gr.	2.6
26 oz. / 881 gr.	2.68
27 oz. / 915 gr.	2.76
28 oz. / 949 gr.	2.84
29 oz. / 983 gr.	2.91
30 oz. / 1017 gr.	2.99
31 oz. / 1051 gr.	3.07
32 oz. / 1085 gr.	3.15
33 oz. / 1119 gr.	3.23
34 oz. / 1153 gr.	3.31
35 oz. / 1187 gr.	3.39
36 oz. / 1220 gr.	3.46
37 oz. / 1254 gr.	3.54
38 oz. / 1288 gr.	3.62
39 oz. / 1322 gr.	3.7
40 oz. / 1356 gr.	3.78
41 oz. / 1390 gr.	3.86
42 oz. / 1424 gr.	3.94

Interface®

CQUEST™ GB

According to ISO 14025, EN 15804 and ISO 21930:2017

5. LCA Interpretation

The life cycle impacts of modular carpets are driven by the Product Stage and the impacts form this stage are driven by raw materials. Yarns and backing materials are the major contributors to impacts. Recycled polymers in both yarns and backings greatly reduce the impacts as compared to virgin petrochemically based materials previously used in Interface carpet manufacture.

6. Additional Environmental Information

6.1. Environment and Health During Manufacturing

All information on product stewardship can be found on Interface's sustainability website.

6.2. Environment and Health During Installation

All reccomendations shall be utilized as inicated by SDS and installation guidelines.

6.3. Extraordinary Effects

Fire

NAME	VALUE
Radiant panel (ASTM E-648)	Class 1
Smoke density (ASTM E-662)	< 450

Water

The product's backing is impervious to water, protecting the subfloor from leaks and spills. Exposure to flooding for long periods may result in damage to the product.

Mechanical Destruction

The product is intended for commercial applications with severe wear (CRI Test method 101 Appearance Retention Rating). Performance requires proper installation according to Interface installation guidelines.

Interface®

CQUEST™ GB

According to ISO 14025, EN 15804 and ISO 21930:2017

6.4. Environmental Activities and Certifications

All environmental activites and certifications can be found on Interface's sustainability website.

6.5. Further Information

For more information on the CQUESTTM backings visit Interface's carbon negative website.

7. References

EN 15804: EN 15804:2012-04+A1 2013: Sustainability of construction works - Environmental Product Declarations - Core rules for the product category of construction products

GaBi 9 (2019). Software-System and Databases for Life Cycle Engineering Copyright, TM. Stuttgart, Echterdingen

Interface, Inc (2020). Life Cycle Assessment of CQuest™ GB.

ISO 14025: DIN EN ISO 14025:2011-10: Environmental labels and declarations - Type III environmental declarations-Principles and procedures

ISO 14040 (2006). Environmental management - Life cycle assessment - Principles and framework

ISO 14044 (2006). Environmental management - Life cycle assessment - Requirements and guidelines

ISO 21930: 2017 Sustainability in buildings and civil engineering works – Core rules for environmental product declarations of construction products and services

UL Environment General Program Instructions version 2.5 March 2020

UL Environment (2018) Product Category Rules for Building-Related Products and Services, adapted for UL Environment from the range of Environmental Product Declarations of institute Construction and Environment e. V. (IBU) Part A Calculation Rules for the Life cycle Assessment and Requirements on the Project Report

UL Environment (2020) PCR Guidance- Texts for Building-Related Products and Services. Part B: Requirements on the EPD for Floor coverings

